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I. INTRODUCTION

The most common analog Voltage Controlled Oscillator
(VCO) cores are sawtooth and triangle wave generators. This
is due to the simplicity and accuracy of charge integration
with a single capacitor; converting a current into a frequency.
These VCOs have rich harmonic content, and can be easily
converted to square or pulse waves for even greater variation
in timbre. But, there are times when a pure tone is desired,
so conversion from the generated sawtooth or triangle wave
is required. Sine wave based VCOs do exist, but are typically
more complicated than their sawtooth counterparts, and as a
result cost more and are more likely to have drift and accuracy
issues. This paper briefly discusses some of the most popular
ways of converting a triangle wave to a sine wave, and goes
into depth on one the lowest distortion options, the Operational
Transconductance Amplifier (OTA) with “cusp canceling”.

II. BACKGROUND

There are a number of ways to convert a triangle wave
to a sine wave. Tracking filters can be use to remove the
upper harmonics, but these need to be of high order (>4)
or highly resonant as the harmonics are quite close to the
fundamental. High order filters are large and expensive, and
resonant filters need to track extremely well to keep the output
amplitude constant. There are also some practical limitations
to filtering at low enough frequencies for Low Frequency
Oscillator (LFO) operations. Switched capacitor filters would
do a very good job here, as they could be synchronized
directly to the VCO output using a PLL, although lock times
on the PLL could be quite long at low frequencies. Hybrid
techniques employing a sine lookup table, Analog to Digital
Converter (ADC), and Digital to Analog Converter (DAC) can
be extremely accurate, low drift, and produce pure tones. They
are versatile, in that alternate waveforms can be loaded into
the lookup table, but are also more complicated and costly. For
this work, we will be focusing on purely analog techniques,
most of which being distortion based waveshapers.

A very good overview of waveshapers is given by Tim
Stinchcombe on his website (http://www.timstinchcombe.co.
uk/index.php?pge=trisin). Stinchcombe lists a number of good
references, and to these we would like to add “Non-linear
Circuits Handbook” from Analog Devices, Inc., 1976 (edited
by Dan Sheingold), which has a number of different sine
synthesis techniques, mostly using multipliers. We will use
Stinchcombe’s taxonomy for evaluating the various topologies:
JFET, breakpoint, and differential pair.

A JFET waveshaper is shown in Figure 1, and is reported
to give good results (<1% THD). Although this is a simple
circuit, it has a number of temperature dependent components,
so drift may be an issue. The distortion performance is also not

Fig. 1. Simple JFET based sine waveshaper.

Fig. 2. Breakpoint waveshaping inside the ICL8030.

as good as OTA methods which can achieve <0.05% THD.
A thorough analysis of the circuit is warranted, as better
performance may be attainable. Unfortunately, it is beyond
the scope of this work, and will have to wait.

Breakpoint shaping involves setting a series of voltage levels
at which the circuit gain is reduced. This was used inside of
the ICL8038, and one half of its circuit is shown in Figure 2.
Simpler methods are possible with diodes, but it’s unclear if
the complexity is worth it. The ICL8038 used 4 breakpoints,
and only achieved a distortion of 1% after trimming. The
XR8038 variant lists 0.3% THD, which is better, but still not
very good compared to OTA methods. The main advantage
to breakpoint shapers is that they don’t rely as heavily on
transistor parameters, and can therefore be more stable. For
integrated circuits, where transistors are plentiful and well
matched, a higher order shaper might make sense, but for
discrete designs they are rather cumbersome.

Differential pair (or using an OTA) triangle to sine con-
version provides the lowest distortion of the three presented
options, and can be compact and inexpensive. But, it can also
be hard to trim and has large temperature dependencies. There
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Fig. 3. Discrete and OTA versions of x/(1− x2) sine synthesis.

are two main methods of OTA distortion: emitter degeneration
and cusp canceling. The XR2206 used emitter degeneration,
and claims 0.5% THD, but this can be greatly improved
upon with cusp canceling. The remainder of this paper will
present a mathematical model for the differential pair, compare
degeneration to cusp canceling, and show distortion results for
both techniques.

There are two other differential pair sine shapers worth men-
tioning. The first employs an x/(1+x2) circuit (Figure 3), and
is shown in “Analog Circuit Design, Volume 4: Waveform Pro-
cessing Ciruits” by Dennis Feucht, 2010 (originally stumbled
across it here: http://m.eet.com/media/1051374/C0453pt2 4.
pdf). The chapter is good, but Feucht erroneously identifies
it as an x2 circuit, in an attempt to synthesize the Tay-
lor series directly. The higher order example he shows is
also misidentified this way. In fact, it is better than an x2

circuit, and is identical to the JFET based differential pair
amplifier shown by Hassan in “FET Differential Amplifier
as a Tri-Wave to Sine Converter”, 2004. This is due to the
ID = IDSS(1− (Vgs/Vp))2 transfer function of the JFET. As
a result, the same theoretical minimum 0.005% distortion level
can be achieved by either circuit, but the BJT version does not
have temperature dependencies. Both circuits require either
emitter degeneration or cusp canceling to achieve this low
distortion value.

An even better version of a differential pair shaper is shown
by Barrie Gilbert in “Circuits for the Precise Synthesis of the
Sine Function”, 1977. Gilbert cascades several differential pair
amplifiers at equally spaced breakpoints. In a way, it is similar
to other breakpoint generators, but rather than attempting
to adjust slope based on input voltage, it adds a series of
approximate sines, with the errors of each canceling out. What
is even more impressive, is that each breakpoint reverses the
direction of the signal, so more than ±90◦ can be synthesized.
The AD639 employed this method to achieve ±500◦ of sine
generation with 0.02% THD over the first ±90◦. The higher
error in comparison to cusp canceling is due to the circuit
being tuned for a wider range. If it is only to be used over
the first ±90◦, a simple four transistor variant can achieve the
same theoretical 0.005% THD.

Gilbert gives multiple ways of implementing this circuit,

Fig. 4. Gilbert differential pair sine synthesis circuits.

and two of these are shown in Figure 4. The lower circuit
achieves 180◦ per transistor, with a single current source
for the tail currents. Another current source can be used
for the bias circuitry, or a geometric resistor network can
be used. The circuit has large temperature dependencies, but
these can be canceled out with temperature dependent current
sources. Ultimately, it is an incredibly useful circuit, but a bit
complicated for basic sine shaping purposes.

III. OTA WAVE SHAPING ANALYSIS

To understand why the differential pair gives a good sine
approximation, we can compare the Taylor series of both the
differential amplifier transfer function and the sine function. A
simple differential amplifier, without emitter degeneration, is
shown in Figure 5. The sum of currents (Ia) in both transistors
is held constant, and the difference between them (Io) is taken
as the output. The input signal (Vi) is the difference in base
voltages, and the output current as a result of base-emitter
voltage (Vbe) is:

Ic = Ise
Vbe/Vt → Vbe = Vtln(Ic/Is), (1)

Fig. 5. BJT Differential amplifier.
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where Ic is the collector current, Is is a device specific
parameter, and Vt is the “thermal voltage” (∼26mV). This
gives the differential amplifier transfer function as:

Ia = Ic1 + Ic2 (2)
Io = Ic1 − Ic2 (3)

→ Ic1 =
Ia + Io

2
(4)

→ Ic2 =
Ia − Io

2
(5)

Vi = Vbe1 − Vbe2 = Vtln(Ic1/Is)− Vtln(Ic2/Is) (6)

Vi = Vtln(Ic1/Ic2) = Vtln(
Ia + Io
Ia − Io

) (7)

→ eVi/Vt =
Ia + Io
Ia − Io

(8)

→ (Ia − Io)eVi/Vt = Ia + Io (9)

→ Io(eVi/Vt + 1) = Ia(eVi/Vt − 1) (10)

⇒ Io = Ia(
eVi/Vt − 1

eVi/Vt + 1
) (11)

The Taylor series for Vi/Vt = x is:

Io
Ia

=
1

2
(x− x3

12
+

x5

120
− 17x7

20160
+ ...) (12)

The Taylor series for Y = sin(t) is:

Y = t− t3

6
+

t5

120
− t7

5040
+ ... (13)

The differential pair matches very closely in terms of
form (alternating sign, odd power series), but has the wrong
coefficients to perfectly match the sine function. Since the
equations only need to match for ±90◦ of the sine function,
we can select an input amplitude to modify the coefficients.
The input function to the differential amplifier is a ramp wave
which increases linearly in time: Vi/Vt = kt, where t is time.
The Taylor series then becomes:

Io
Ia

=
1

2
(kt− (kt)3

12
+

(kt)5

120
− (kt)7

1185.88...
+ ...) (14)

=
k

2
(t− k2t3

12
+
k4t5

120
− k6t7

1185.88...
+ ...) (15)

By selecting k =
√

2, k = 1, or k = 0.7857 we can
match the second, third or fourth coefficient, but, we can not
match them all at once. To do this, we need more parameters,
which we can add by modifying the circuit. Figure 6 shows
schematics for differential pair and OTA circuits with emitter
degeneration resistors (Re). This added feedback alters the
transfer function as follows:

Vi = (Vbe1 + Ic1Re)− (Vbe2 + Ic2Re) (16)
= (Vbe1 − Vbe2) + (Ic1 − Ic2)Re (17)
= Vtln(Ic1/Ic2) + IoRe (18)

= Vtln(
Ia + Io
Ia − Io

) + IoRe (19)

→ Vi
Vt

= ln(
1 + Io/Ia
1− Io/Ia

) +
Io
Ia

IaRe

Vt
(20)

Fig. 6. Discrete and OTA based emitter degeneration sine waveshapers.

Unfortunately, this function can not be inverted to obtain
Io as a function of Vi, but we can take its Taylor series and
compare it to t = Sin−1(y). We set m = IaRe/Vt, and again
set Vi/Vt = kt:

Vi
Vt

= 2[(
m

2
+ 1)x+

x3

3
+
x5

5
+
x7

7
+ ...] (21)

→ t =
(m+ 2)x

k
+

2x3

3k
+

2x5

5k
+

2x7

7k
+ ... (22)

The Taylor series of t = Sin−1(y) is:

t = y +
y3

6
+

3y5

40
+

5y7

112
+ ... (23)

But, in this case the magnitude of the output equation does
matter, as time must be equal between the two functions, so the
coefficients must be exactly matched. This gives k = 4, m = 2
for matching the first and second coefficients, or k = 16/3,
m = 10/3 for matching the first and third coefficients.

Again, we can only match two of the coefficients, but the
addition of the m parameter allows a finer control over the
first coefficient (the initial slope), and therefore the circuit
can be tuned for lower distortion. Robert Meyer explored this
topology in “The Differential Pair as a Triangle-Sine Wave
Converter’, 1976, and found a lower bound on distortion of
0.2%, with m = 2.5 and k = 4.2. Meyer defines the term
VM/Vt, which is optimized to 6.6. This is equal to our kt at
tmax = π/2, so k = 4.2.

To improve upon this, we will need to decouple the pa-
rameters which control the upper coefficients. Adding a bit
of the original signal (cusp canceling) allows us to do this.
In more physical terms, the original differential amplifier has
too much curvature at the start of its slope, and never really
achieves a zero slope function, which is required at the top of
a sine wave. The emitter degeneration resistor helps straighten
up the slope at the beginning, but still doesn’t allow for a zero
slope condition at reasonable input levels. By subtracting some
of the input signal, we both straighten up the input, and create
a zero slope point as the input becomes larger than the output.
The signal even reverses, giving an almost ±180◦ of usable
range.

An OTA implementation of cusp canceling is shown in
Figure 7. The output is simply a mix of the differential pair
output and the original signal. The difficulty here is to pick the
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Fig. 7. OTA based sine shaper with cusp canceling.

relative amplitude of these signals to minimize distortion. By
looking at the Taylor series, we can get an idea of the optimal
ratios.

Vi
Vt

= k1t (24)

Vt
IaR2

=
k2
k1

(25)

Vo = R[Io −
Vi
R2

] = R[Io −
Vt
R2

Vi
Vt

] (26)

= RIa[(
eVi/Vt − 1

eVi/Vt + 1
)− Vt

IaR2

Vi
Vt

] (27)

= RIa[(
ek1t − 1

ek1t + 1
)− k2

k1
k1t] (28)

=
IaR

2
(k1 − 2k2)[t− k31t

3

12(k1 − 2k2)

+
k51t

5

120(k1 − 2k2)
− 17k71t

7

20160(k1 − 2k2)
+ ...]

(29)

Since absolute amplitude doesn’t matter, we can ignore
the IaR/2 at the beginning, and match the coefficients of
Equations 13 and 29. Because of the normalization done
by dividing out the amplitude, the first coefficient already
matches, so this gives the second and third as:

k31
12(k1 − 2k2)

=
1

6
(30)

k51
120(k1 − 2k2)

=
1

120
(31)

→ k1 =

√
2

2
≈ 0.7071 (32)

→ k2 =
3
√

2

16
≈ .2652 (33)

Because of the mismatch in the remaining coefficients,
better performance can be obtained by slightly shifting these
results. Figure 8 shows the theoretical THD of the circuit for
varying k1 and k2 parameters. These were simulated with a
computer over the first ±90◦, taking the FFT output and divid-
ing the geometric sum of the harmonics by the fundamental.
The optimal parameters were found to be k1 = 0.7476 and
k2 = 0.270065 with a THD of -83.37dB (0.0068%).

IV. RESULTS

All three variants of the OTA based sine waveshapers were
built and tested for distortion. The circuits used are shown in

Fig. 8. Computer simulation of OTA sine waveshaper circuit performance
for various k1 and k2 values.

Figures 9–10, and they performed quite close to the predicted
levels. The circuits were driven with a triangle wave of variable
amplitude from an HP-33120A signal generator, and the output
harmonics were measured with an HP-3561A dynamic signal
analyzer. The drive signal was 1.3kHz, and the harmonic
content was summed over a 20kHz bandwidth (up to the 13th

harmonic).
Every topology tested was able to null all of the even

harmonics out of the signal. The basic OTA circuit was able
to null the 3rd harmonic, but the remaining harmonics ranged
from -38dB at the 5th down to -54dB at the 13th. This gives
a total of -37dB THD (1.4%). The emitter degeneration case
performed much better, with both the 3rd and 5th harmonics
nulling out, and the others decaying from -54dB at the 7th

down to -60dB at the 13th. This gives a total of -51dB THD
(0.28%), which is quite close to Meyer’s result of “about
0.2%”. The cusp canceling method performed the best, with
all harmonics being pushed into the noise floor of the signal
analyzer. Small peaks could be measured for the 2nd, 3rd,
and 5th harmonics around -80dB, but the remainder were
unmeasurable (<-85dB). This gives a total of -74dB (0.02%),
assuming all remaining harmonics were at -85dB. If the
2nd harmonic were better trimmed out, and the remaining
harmonics are assumed to be at a negligible level, those figures
become -77dB THD (0.014%). It’s possible this figure can
be pushed even lower by reducing the input impedance to
the OTA, thereby eliminating the OTA base current errors. A

Fig. 9. Tested circuit for basic, over-driven OTA sine waveshaper.
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Fig. 10. Tested circuit for OTA sine waveshaper with feedback (emitter
degeneration).

Fig. 11. Tested circuit for OTA sine waveshaper with cusp canceling.

second circuit was built with 36Ω resistors replacing the 1kΩ
resistors in Figure 11, and it had -80dB THD (0.01%).

The cusp canceling distortion figures may seem too good
to be true, and in some ways they are. The first thing to
note, is that the OTA gain equation is severely dependent
upon Vt, since Vt = kT/q (where k is Boltzmann’s constant,
T is temperature, and q is the charge of an electron). So
some form of compensation will be required. Secondly, as
shown in Figure 8, the THD null is extremely sharp. The
full range shown in the figure is over ±1% change in k1
and k2. This means that a 1% change in component values,
or transconductance of the OTA, could increase the THD to
-50dB (0.3%). Granted, this is still better than many of the
other options at their best, not accounting for drifts they may
have. A quick test with a hot air gun, raising the temperature
∼ 30◦C, shifted all odd harmonics up to -50dB (-42dB THD
(0.77%)).

The second issue with the circuit, is how difficult it is to
tune. As can be seen in Figure 8, both k1 and k2 interact
with each other, so iterative tuning is required. This can be
accomplished by making a small change in one parameter,
and then re-nulling the other. After this, the first parameter
is changed again in the same direction as before (if it was
lowered, it is lowered once again), and the second parameter
is re-nulled again. The THD should fall with each adjustment,
and adjustment stops when THD begins to rise.

V. CONCLUSIONS

An OTA based sine shaper is a relatively inexpensive and
well performing circuit, if cusp canceling is used. For best
results it should be built with temperature compensation, and
a simple thermistor is good enough, as any extra complexity

would make other options more favorable. If a thermistor is
employed, it should replace the 1kΩ resistor at the inverting
terminal of the OTA shown in Figure 11. This will allow
k1 to track with temperature, but keep k2 constant, as it is
not affected by Vt. Other modifications to this circuit would
include smaller value trimmers with larger resistors in series
with them, to give a smaller tuning range. The input to the
entire circuit also needs an attenuator of some sort, as the
amplitude was adjusted via the function generator for this
work. Finally, for even more temperature stability, the current
source for the OTA (Ia) could be fixed with an opamp current
source, as the voltage at the OTA bias input pin varies with
temperature. With large voltage rails, this variation becomes
less of an issue.

The values of k1 = 0.7476 and k2 = 0.270065 can be
used to tailor the OTA sine shaper circuit for a particular
application. From equations 24 and 25, we can find attenuation
ratios with respect to the single sided, maximum input voltage,
Vmax, which occurs at tmax = π/2.

Vt = 26mV @ 28◦C (34)
Vi
Vt

= k1t→ Vi = k1Vtt (35)

⇒ Vmax =
k1Vtπ

2
= 30.53mV (36)

This represents the maximum voltage applied to the inverting
terminal of the OTA, not the circuit input voltage. To obtain
the circuit input voltage, this Vmax value must be multiplied
by the resistor divider ratio. For example, in the circuit of
Figure 11, The input voltage is 3.62Vpp = 1.81Vp, which
gives Vmax = 1.81V/57.6 = 31mV, since the resistor divider
is 1kΩ and 56.6kΩ.

Similarly, k2 sets the maximum current (Imax) flowing into
the inverting terminal of the opamp, as follows:

Imax =
Vmax

R2
, Vmax =

k1Vtπ

2
(37)

Vt
IaR2

=
k2
k1
→ R2 =

k1Vt
k2Ia

(38)

⇒ Imax =
k2Vmax

k1Vt
Ia =

k2π

2
Ia ≈ 0.42422 · Ia (39)

In the example circuit, Ia ≈ 20.6V/100kΩ = 206µA, which
gives Imax = 87.4µA. With an input voltage of 1.81Vp,
Rs = 1.81V/87.4µA= 20.7kΩ. So the theory matches the
experimental quite well, with the slight mismatch of Vmax

most likely due to the approximation of Vt.
For improved performance over the OTA, the x/(1 + x2)

circuits of Figure 3 should have better temperature stability.
The Gilbert shaper of Figure 4 adds a fair bit of complexity,
but also opens up possibilities the others do not. It can be
used as a wavefolder, or to add Phase Modulation (PM) to
any VCO merely by adding the PM signal to the VCO output,
which would give it through-zero capability.


